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Classical functions corresponding to given quantum operatorst 
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Department of Physics and Astronomy, University of Rochester, Rochester, N.Y., 
U.S.A. 
MS.  received 19th February 1968 

Abstract. The problem of obtaining the classical function which corresponds 
to a given quantum operator is discussed. Its application to the phase-space 
distribution functions and to the ordering of an operator is briefly considered. 

1. Introduction 
I n  discussing the relation between the quantum-mechanical and the classical description 

one is many times required to determine the operator which corresponds to a given 
classical function. We shall consider the canonical coordinates and momenta as the basic 
dynamical quantities. I n  the quantum-mechanical case these satisfy the commutation 
relations: 

On account of this non-commutativity in the quantum-mechanical case, the association of 
operators with given classical functions is often ambiguous. Many rules are proposed 
which give a definite procedure for obtaining the quantum operator which corresponds 
to the given classical function. Among those which have been discussed at length are the 
following (Shewell 1959, McCoy 1932, hlehta 1964, Kubo 1964, Cohen 1965, Daughaday 
and Nigam 1965): (i) Weyl's rule, (ii) standard ordering, (iii) normal ordering, (iv) anti- 
normal ordering. 

If we consider a system with only one degree of freedom, and assume that the given 
classical function F(q, p )  has a double Fourier integral representation 

then the operator pLv in Weyl's rule, which corresponds to F(q, p ) ,  is obtained by replacing 
q and p by the operators 4 and 3 respectively on the right-hand side of (1.2) : 

P ,  = ss ~ ( 7 ,  0) exp(i(7rf + 0$)} d7 dd. (1 .3 )  

It can be shown that the operator which corresponds to qnpm according to this formula is 
the coefficient of ((m+ n) !/m!n!)hmpTL in the expansion of (prf + A$)mtn, and is thus obtained 
by replacing q and p by the corresponding operators in the completely symmetrized form 
(with respect to all permutations) of qnpm. 

In  standard ordering the operator F ,  which corresponds to F(q, p )  is given by 

ps = ss ~ ( 7 ,  0) exp(i7rf) exp(iT$) d7 dd (1.4) 

and is obtained by ordering q and p in F(q, p )  in such a way that all powers of q precede 
all powers of p ,  and then by replacing these quantities by the corresponding operators. 

t Research supported by the U.S. Army Research Office (Durham). 
$ In this paper c-number quantities are denoted by simple letters without a circumflex 

(e.g. q, p :  CO: CO*, etc.), whereas the corresponding quantum operators are denoted by a circum- 
flex (e.g. q, p ,  a", a"+ etc.). We have chosen units such that f i=  1. 
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For discussing normal and anti-normal ordering, one introduces in place of q and p 
two new quantities v and v*, defined by 

The operators corresponding to U and E* will be denoted by B and a"+, so that they satisfy 
the commutation relation 

If we also write [ r z ,  Bt] = 1. (1.6) 

(1.7) 
8 - i~ 6+i7 

E=-- E* = - 
we obtain 

i(Tq+ 6p) = 51*U - EU* (1.8a) 
and 

i ( T d +  e$) = E*& - Edt. (1.8b) 
The operator which corresponds to F(q,p)  in the normal ordering rule is then given by 

d 2  ) d 2  

$" = 1s Y(T,  0) exp( - ccdt) exp(a*d) dT d8 

PA = j J Y ( T ,  6) exp(rx*d) exp( - adt) dT de. 

(1.9) 

and the one in the anti-normal ordering rule is given by 
'e 

(1.10) 

As mentioned earlier, these rules give definite procedures for obtaining quantum 
operators corresponding to given classical functions. In this paper we consider the inverse 
problem which is also of interest, namely that of determining the classical function 
corresponding to a given operator. This, in particular, has applications to the phase-space 
distribution functions and to the ordering of an operator. For simplicity we consider 
systems with only one degree of freedom. The generalization to the case of systems with 
any finite number of degrees of freedom is more or less straightforward. 

2. The general case 
We are given the operator p, and our problem is to derive the expression for the 

corresponding classical function in various rules of association. Let us assume that we can 
write the operator in the form 

P = /i Y ( T ,  6) exp(i(74 + 63;)) dT do. (2.1) 

The Baker-Housdorff identity, which holds for any two operators A  ̂ and B which commute 
with their commutator, reads (Messiah 1961) 

exp(A+B) = exp(A^) exp(B) exp( -&[A, B]). (2.2) 

(2.3) 

(2.4) 

From (2.1)) (2.2) and (1.8b) we obtain 

P = JJ Y ( T ,  6) exp(+kO> exp(k4) exp(i6$) dT d6 

= sj Y ( T ,  8) exp( -& l cc12 )  exp( - ad') exp(a*d) dT d0 

= i/ Y ( T ,  6) exp($lccj2) exp(a*B) exp( -ctcit) dr de. (2.5) 

Relations (2.1)) (2.3)-(2.5) then immediately give the required classical fu_nctions F,(q, p ) ,  
F,(q,p), F,(a, U * )  and FA(v, a*) which correspond to the operator F in the Weyl's, 
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standard, normal and anti-normal ordering? rules respectively : 

F,(z+, v * )  = ij ~ ( 7 ,  19) exp{ - $(? + P)> exp(i(7q + Op)} d7 dB (2.8) 

(2.9) 
and 

F,(c, c*) = ~ ( 7 ,  8) exp{t(Tz + O z ) }  exp{i(Tq+ Op)) d7 de. 

To  obtain the expression for ~ ( 7 ,  e),  we use the relation$ (see, for example, Kubo 1964, 
Imre et al. 1967) 

1 
2n 
-- T r  [exp(i(mj + e$)}] = 8(~)8(O) (2.10) 

where 6 is the Dirac delta function. From (2.1), (2.2) and (2.10) we then obtain, after 
some simplification, 

1 
- T r [ ~ e x p ( - i ( ~ ~ + O $ ) } ]  = ~ ( 7 ,  0).  
2n 

(2.11) 

From equations (2.2), (2.6)-(2.9) and (2.1 1) we then obtain 

1 
2n yW(7,O) 3 Y ( T ,  e )  = - Tr[P exp{ - i ( T d +  e$))] (2.12) 

1 
Y , ( T , ~ )  = exp(+id)y(7,O) = - Tr{P exp( - io$) exp( - i~ij)) (2.13) 

2n 
~ N ( T ,  0) = exp( -&IccI~)Y(T, 0) = -Tr{Pexp( - c c * ~ )  exp(ctBt)} (2.14) 

1 
yA(7,0) exp(tltr12)y(7, 0) = -Tr{Pexp(acit) exp( -K*&)}, (2.15) 

27T 

Here a is given by (1.7). On taking the inverse Fourier transforms of (2.12)-(2.15) we 
obtain for_mally the required functions F,, F,, F N  and FA which correspond to the given 
operator F in various rules of association. 

Equations (2.12)-(2.15) give a definite way of obtaining the Fourier transforms of 
F,(q, p ) ,  F,(q, p ) ,  FN(~,  U * )  and FA(v, v*). However, the calculations in specific cases may 
become quite complicated, and sometimes one even has to consider generalized functions 
for this purpose. Occasionally some alternative simpler forms are available for F,, F,, F N  

and FA. We consider in the next section the case of normal and anti-normal ordering. 
Weyl's rule of association has been discussed by Kubo (1964), and the case of standard 
ordering is not very different. I t  must be emphasized that, even for a well-behaved 
operator P, the associated classical function in general can only be interpreted in terms of 
generalized functions. 

t For convenience we express the functions F ,  and F A  as functions of z' and v* rather than 
of q and p .  

$ Relation (2.10) may also be derived by using coherent states (see equations (3.1) and (3.2) 
below). Thus from (1.8), (2.2), (3.1) and (3.2) it is seen that 

1 
277 

i Tr[exp(i(~;1+@)1] = T r  exp( -&1aI2) exp( -ct& (exp) a*d Iv><vl  d2a .r 
= 1 exp(-hiai2) J exp(r*o-ccz'*) d2v 

7r 

from which (2.10) follows immediately. 
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3. Normal and anti-normal ordering 
I n  this section we make use of the coherent states (Glauber 1963, Klauder 1960) to 

obtain FN(g,p)  and FA(q,p)  which correspond to the operator $' in the normal and the 
anti-normal ordering rules respectively. The coherent states are defined as the normalized 
eigenstates of the operator 8: 

and satisfy the completeness relation 
dlv)  = z+) (3.1) 

where d2v = d(B'v)d(Yv). 
From (2.14) and (3.2) we obtain 

s 1 
297-2 

yN(7,O) = ---Tr{Pexp(-cc*d) l a }  (VI d2aexp(cr8+)) 

Hence, on taking the inverse Fourier transform of (3.3), we obtain 

FN(z', U*) = (a iP lv )  (3.4) 
a relation which can also be inferred directly. 

state representation of the operator F :  
Finally, from (2.9) and (2.15) it is-easy to verify that FA(a, v*) is the diagonal coherent- 

P = J F A ( v ,  a*)[.) (.I d2u (3.5) 

where v is given by (1.5) and d2v idq  dp. A precise method for obtaining the diagonal 
coherent-state representation has been discussed elsewhere (Mehta 1967, Klauder et al. 
1965, Miller and Mishkin 1967) and may be used to obtain FA(u, a*). 

In  the next two sections we consider some applications of this formalism. 

4. Phase-space distribution functions 
Let j3 be the density operator describing the statistical state of the system, The 

associated phase-space distribution function? Qw(q, p )  in Weyl's rule of association 
satisfies the relation 

JJ Q W k ,  P> exP( - 479 + eP>) 4 dP = T r P  expi - 4.4 + O$))l. (4.1) 

The distribution function Ow has the property that, given any operator 13, we can write 
(Moyal 1949) 

Tr(8P) = JJ Q'W(4, P)F'W(q, P )  4 dP (4 4 
where Fw(q,p) .  is the classical function which corresponds to the operator P in Weyl's 
rule of association. 

If we compare (4.1) with (2.12) and use (2.6), it is readily seen that 

1 
Q d 4 ,  P )  = p d 4 ,  P ) .  (4.3) 

7 Q q ( q ,  9) is essentially the Wigner distribution function (see Wigner 1932, Moyal 1949). 
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In  a similar manner, if aN and QA denote the phase-space distributions in the normal 
ordering and the anti-normal ordering rules (Mehta 1964, Mehta and Sudarshan 1965, 
Kano 1965) of association, respectively, then 

J’ QN(v, v*) exp(av* -a%) d2v = Trip exp(adt) exp( -.*a)} (4.4) 

J @,(a, U*) exp(av* - a*v) d2v = Tr{$ exp( - a*d) exp(adt)}. (4.5) 

From equations (4.4), (4.5), (2.14), (2.15), (2.8) and (2.9) we find thatt 

1 
@ A ( U ,  v*) E -PN(vu, v*) 

ON(U, v*) = -p*(v, v*). 

(4.6) 

(4.7) 

7T 

1 
7T 

We did not consider the anti-standard ordering rule of association in the above discus- 

1 
27r 

sion. However, it may easily be verified that 

@‘s(q, $1 -PAS(q ,  P) (4 8) 

where PA&, p) denotes the classical function which corresponds to the operator p^ in the 
anti-standard ordering rule of association. QAs(q, p )  is the corresponding phase-space 
distribution function. By anti-standard ordering, we mean here the arrangement in which 
all powers of $ precede all powers of 4. Thus, for example, the operator FAs corresponding 
t o  F(q, p) of equation (1.2) is given by 

PAS = Jj Y ( T ,  0) exp(i0$) exp(i.rd) dT do. (4.10) 

We thus find that the problem of obtaining the phase-space distribution function for 
certain rules of association is equivalent to obtaining the classical function corresponding 
t o  the given density operator for the ‘reciprocal’ rule of association. 

5. Ordering of an operator 

By definition, an operator G(a, at)  is said to be in the normally ordered form if 
Suppose we are interestzd in obtaining the normally ordered form of an operator P.  

Q(a,  a+) = :Q(a, a+):  (5.1) 
where :e: denotes the normal ordering operation on G, i.e. tke operation of arranging all 
powers of 8’ to the left of all powers of a” in the expansion of G, without making use of the 
commutation relation (1.6). Thus, for example, : a ut :  E :a+a: = uta. I t  is now obvious 
that if FN(v, a*) is the classical function which corresponds to the operator F in the normal 
ordering rule of association, then 

P = :PN(a ,  a t ) :  (5.2) 
where PN(a, a’) is obtained by replacing v by d and U* by d t  in FN(v, U*). Relation (5.2) 
can thus be used to express any operator in the normally ordered form. 

In  an analogous manner, if we denote by “ ” the anti-normal ordering operation, we 
obtain 

(5.3) 
t A result essentially similar to (4.6) and (4.7) has also been derived by Lax and Louise11 (1967). 
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and this relation then gives the anti-normally ordered-form of P. Here FA(v, U*) is the 
classical function which corresponds to the operator F in the anti-normal ordering rule. 

Similarly, F,(q,p) and F,(q,p) may be used to obtain the completely symmetrized 
form of fl and the standard ordered form of P, respectively. 

consider the normally and anti-normally ordered forms of the As an example, we 
operator 

From (3.4) we find that 

If we insert the identity 

in (5.5) and also use the 

P = exp(-Adfd). 

F,(c, U*) = ( c /  exp(-Ad+d)12:> 

operator 
C i a )  (ni = 1 
n 

relation 
E n  

(nlv) = exp(-$iv/z)--- 
(n!)lI2 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

where In) is the number state (the eigenstate of dta” with eigenvalue n),  we obtain 

FN(zi, U*) = 2 ( V I  exp( -Xdtd)jn) (nJ2 : )  

= exp{ - (1 - e-A)U*U). 
n 

(5.8) 
From (5.2) and (5.8) we thus obtain (see also Louise11 1965, Mandel 1966) 

exp( --Ad+&) = :exp{ - (1 - e-L)d+d):, (5.9) 
I t  is worth mentioning that the relation (5.9) may also be used to obtain the anti-normally 
ordered form of exp( - Xdtd). From (5.9) it follows that for any two operators d and c” 
which satisfy the commutation relation 

the relation 
[ d ,  c”]  = 1 

m i  

must hold. We now substitute 

in (5.11) and obtain 
&a”? ,  c ” =  - 6  

“ 1  2 - (1 -ea)ndn(itla 
n = O  n. 

exp( -A&+)  
I 

(5.10) 

(5.11) 

(5.12) 

= “exp{(l - ea)d+d)”. (5.13) 

Relation (5.13) may be rewritten in the form 

exp(-Ad+d) = eL “exp{-(eA- 1)dtB)”. (5.14) 

Throughout the above discussion we have considered systems with only one degree 
of freedom. As an illustration of applications to systems with several degrees of freedom, 
we derive below the normally and anti-normally ordered forms of the operator 

P = exp - 2 2 (dit+ ai*)hij(d, + ~ ~ 1 ) .  (5.15) 

We consider the case when the matrix { A i j >  can be diagonalized by a similarity transforma- 
tion 

SAS-1 = n (5.16) 

r I = 1  ,=1 
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where A is diagonal. The operators a", and dit satisfy the commutation relations 

[ai, a j ]  = [a",?, djt] = 0 
[ai, "it] = sij. 

(5 .17~)  
(5.1 7 b )  

Let us introduce two sets of operators dl, d2,  ..., d,  and CA1, CAz, ..., CAn, defined by 
A' 

di = 2 si , (dj+pj)  (5 .18~)  
i = l  

N 
ti = 2 S;ydjt+aj*) 

j=1 

where S is the matrix which diagonalizes A. 
From (5.17) and (5.18) we find that 

[ti) ti] = [a,, dj] = 0 
[&, ti] = 6,j 

and from (5.11) we then obtain 

(5.1 86) 

(5.19a) 
(5.19b) 

N N 

exp ( - 2 A J ~ ~ , )  = n e x p (  - ~ ~ t ~ d ~ )  
i = l  i = l  

Now, it follows from (5.16) and (5.18) that 

Finally, from (5.18), (5.20) and (5.21) we obtain the required result 

N N  

exp( - i = l  2 j = l  2 (dit+Zi*)Aij(dj+pj)] 

(5.22) 

where I is the identity matrix. 
In a similar manner one can show that? 

N N  ,, 
= ''exp (Tr A - 2 c (a,+ + ,xi*> (ea - j(d, + pj)) . (5.23) 

Relations (5.22) and (5.23) may be used to obtain the classical functions corresponding to 
the operator (5.15) in the normal and the anti-normal ordering rules. They may also be 
used to obtain the associated phase-space distribution functions in the case when (5.15), 
with proper normalization, is the density operator. I n  particular, equation (5.23) gives 
immediately the diagonal coherent-state representation of (5.15). 

-i In  the case of systems with one degree of freedom ( N  = 1) the relations ( 5 . 2 2 )  and (5.23) have 
been derived earlier (see Mehta 1967, Wilcox 1967). 

t = l  j=l 
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Note added in proof. Recently Agarwal and Wolf (1968) have considered some related problems 
concerning a unified treatment of various rules of associations (see also Cohen 1965). 
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